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Abstract
In astrophysics and in other sciences there is sometimes a need for information about the
properties of matter, particularly equations of state, in extreme conditions of pressure and
temperature. Global equation of state models, which represent solid, fluid and plasma states,
typically consist of three parts: the cold curve, the ion-thermal contribution and the
electron-thermal contribution. For the calculation of the latest part we present here an average
atom embedded in a jellium code. We employ Liberman’s relativistic and quantum model of
matter which is a significant advance in complexity beyond the commonly used Thomas–Fermi
model. We have applied specific algorithms to deal with the highly oscillatory nature of the free
wavefunctions at high temperatures and to capture resonances which form in the continuum
when bound states are destroyed by pressure ionization. Also we use massive parallel
computing to treat the huge number of free wavefunctions at high temperatures (up to 109 K).
Densities of states of resonant states are shown for uranium. With our code, which we have
called Paradisio, we obtain tables of electron-thermal entropies from which free energies and
pressures are derived. Our results are compared with those calculated in the Thomas–Fermi
approximation and with available experiments. In aluminum, with our quantum code, a shell
structure appears on the Hugoniot and a first-order metallic–nonmetallic transition is created at
low densities and temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The jellium is a uniform electron gas with a positive charge
background. We consider systems where a single atom
is embedded in a jellium. This model can be useful for
condensed matter and plasmas. It could allow us to calculate
thermodynamic quantities (energy, pressure, entropy, etc) and
radiative properties (energy levels, matrix elements, etc).

We are particularly interested here in the determination of
global equations of state (EOS). They typically consist of three
parts:

Pt(ρ, T ) = Pc(ρ) + Pi(ρ, T ) + Pe(ρ, T )

Et(ρ, T ) = Ec(ρ) + Ei(ρ, T ) + Ee(ρ, T ),
(1)

where Pt and Et are the total pressure and energy relative to the
density ρ and the temperature T . Pc and Ec are the electronic
contributions at 0 K (cold curve). Pi and Ei are the thermal

ionic contributions. Pe and Ee are the thermal electronic terms
that will be obtained from entropy Se tables calculated with the
mean atom embedded in a jellium model of Liberman [1] in a
new implementation, the Paradisio code.

The original code of Liberman, Inferno, employs two
approximations to calculate the charge density of continuum
electrons to reduce the cost of computation. First Thomas–
Fermi (TF) is used above 107 K which introduces some loss
of accuracy in this region. Second all continuum waves
are approximated in terms of a small set of basis functions;
unfortunately for this reason Inferno results become unreliable
in the low-density limit [2]. In the same spirit of the Purgatorio
code [2], but with different numerical procedures, we have
created the Paradisio code to obtain the thermal electronic
terms from a few K to billions K and densities ranging from
essentially isolated ion conditions to 105 g cm−3 in uranium. In
Paradisio bound and free electrons will be treated equivalently
in a fully relativistic and quantum manner. We have applied
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Figure 1. Density of free electrons of resonant states at 4.2 g cm−3

and 104 K for U.

specific algorithms to deal with the highly oscillatory nature
of the free wavefunctions at high temperatures and to capture
resonances which form in the continuum when bound states are
destroyed by pressure ionization. Also we use massive parallel
computing to treat the huge number of free wavefunctions at
high temperatures.

2. Theory and numerical methods

The theoretical model is presented in [1]. We have chosen
model A of the two choices offered by Liberman. All the
quantities of interest for the atom are calculated inside the
atomic sphere of radius R which keeps it apart from the
surrounding electron gas.

The electrical neutrality of the atomic sphere implies that
it must contain Z (atomic number) electrons. By the relation
Z = Nbound + Nfree we obtain the chemical potential μ because
the number of bound electrons is

Nbound =
∑

κ,n

Xκ(En) DF(En, μ) (2)

and the number of free electrons is

Nfree =
∑

κ

∫ ∞

0
Xκ(Ek) DF(Ek, μ) dEk (3)

κ is the Dirac quantum number connected to the angular
quantum number l by κ < 0 l = −(κ + 1) and then κ > 0 l =
κ . For each κ , the En are the finite number of bound energies,
the Ek are the free energies continuum which are connected to
the wavevector k by the relations (4), where c is the velocity of
light:

Ek = c2(
√

1 + k2/c2 − 1)

k =
√

2Ek(1 + Ek/2c2)

(4)

DF is the Fermi distribution:

DF(E, μ) = {1 + exp[(E − μ)/T ]}−1 (5)

and

Xκ(E) = 2 |κ |
∫ R

0
[g2

κ(E, r) + f 2
κ (E, r)]r 2 dr, (6)

Figure 2. Density of free electrons of resonant states at 4.2 g cm−3

and 5.5 × 106 K for U.

where gκ and fκ are, respectively, the major and minor
components of the radial Dirac equation.

Once we have obtained μ we can obtain the electronic
density inside the atomic sphere ρe(r) = ρbound(r) + ρfree(r)

by expressions similar to (2), (3) and (6) but without the
r integration. We obtain also the electronic density in the
surrounding electron gas. Then a new potential V (r) can be
determined and iterated to self-consistency [1]. We generally
use for the starting potential the one calculated for a close
temperature or density, otherwise at high temperature or high
density the TF potential.

The electronic entropy Se = Sbound + Sfree will be obtained
from the formulae relative to electrons interacting through a
mean field [1]. The expressions of Sbound and Sfree are similar
to (2) and (3) with the replacement of DF by

F(DF) = DF ln(DF) + (1 − DF) ln(1 − DF). (7)

Strong numerical problems appear to calculate the
continuum spectra. First, most atoms will have resonances in
the continuum, and second, at high temperature (until 109 K)
there is a huge number of highly oscillatory free wavefunctions
and we have to find a way to calculate Nfree (3).

For negative energies there are only a finite number of
solutions En of the Dirac equation. For each κ value, we
find them on a logarithmic grid, but sometimes we also find
solutions for small positive energies, indicative that we shall
have resonances in the continuum for this κ , κR . In that
case, the resonance will be detected in the continuum and
the maximum determined by finding the cancellation of the
logarithmic derivative of the function Xκ (Ek) (6). Then points
will be added for this κR in the original logarithmic grid in
energies of the continuum to describe the resonance correctly.

With the relation (8) we define a function which is a free
electron density:

dNfree,κ

du
= Xκ(E) DF(E, μ) T, (8)

where u = E/T .
In figures 1 and 2 the function (8) is shown in cases with

resonances, for example uranium.
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For the calculation of Nfree (3) we use different procedures
according to the value of the chemical potential μ which gives
the shape of the Fermi distribution DF. The procedures are
similar for the calculations of ρfree(r) and Sfree.

In the usual regime (μ/T less than 250) DF is far from the
step function. We split (3) into two parts Nfree = Nfree,0+Nfree,i

where

Nfree,0 =
∑

κ

∫ Em

0
Xκ(E) DF(E, μ) dE (9)

and

Nfree,i =
∑

κ

∫ ∞

Em

Xκ (E) exp[−(E − μ)/T ] dE . (10)

For Em we have found that we can take

Em = max(0, μ + 10 T ). (11)

With that value DF becomes, for E � Em, the classical
Boltzmann distribution which behaves like an exponential tail.
The integration in (10) can be made with the Gauss–Laguerre
quadrature formulae. Furthermore in (10) we can assume that
Xκ(E) can be approximated by the ideal wavefunctions of an
electron gas, then

gκ = k

√
k

π E
jl(kr)

fκ = k

√
k

π E
sκ

E

kc
jl(kr),

(12)

where

κ < 0 l = −(κ + 1) l = l + 1 sκ = −1
κ > 0 l = κ l = l − 1 sκ = +1

(13)

and the jl are the spherical Bessel functions of the first kind [3].
With the Bessel function identity:

∞∑

l=0

(2l + 1) j 2
l (kr) = 1 (14)

we obtain finally

Xκ (E) = (1 + E/c2)

π2k
k2

(
4

3
π R3

)
(15)

and then Nfree,i .
Unless at small densities, at high or very low temperatures,

where Em = 0 and then Nfree,0 = 0, we need to calculate (9).
The integral in energies in Nfree,0 is done on a original

logarithmic grid where points can be added if there are
resonances. Usually, the summation on κ in (9) practically
converges for the maximum value κm (associated to lm by (13));
lm ∼ km R, where km is related to Em by (4). At high
temperature we can have high values of km and then the radial
Dirac functions are very oscillatory (figure 3) because they are
adjusted on the atomic sphere, with the α parameter, to the
solutions outside the sphere, i.e. for the major component:

gκ = k√
1 + α2

√
k

π E
[ jl(kr) + α yl(kr)] (16)

Figure 3. Oscillations of free wavefunctions for some angular
momentum (κ) and for the maximum energy Em at 85.46 g cm−3 and
2.69 × 108 K for U.

jl and yl are the spherical Bessel functions of first and second
kind [3]. For large values of kr they behave like

jl → 1

kr
sin(kr − lπ/2)

yl → 1

kr
cos(kr − lπ/2).

(17)

Then a minimum value of the period of radial oscillations of
our free wavefunctions will be

pri = 2π/km. (18)

For a good description of the free wavefunctions, we will take
a minimum of 25 points per pri. This implies that we use the
variable

x = ln(r) + r 2 (19)

instead of the variable

x = ln(r) (20)

taken for bound wavefunctions, to not have too many radial
points when pri is small. In every case we take a minimum
number of points on the free radial grid always greater than or
equal to the number of points on the bound radial grid.

Because we have two radial grids, we need to interpolate
twice on a loop of the self-consistent process. This can be done
easily. We take our potential V (r) from the grid of bound
wavefunctions; we interpolate it to solve the Dirac equations
of the free wavefunctions. We also need to interpolate the
electronic density of the free electrons to solve the Poisson
equation on the simpler grid of the bound electrons.

We have found this way simpler than the phase-amplitude
method used in [2] to cope with the sometimes highly
oscillatory free wavefunctions.

Converged values of the electron density and its bound and
continuum components are illustrated in figure 4 for U.

We also use massive parallel computing to calculate in
parallel, for each κ , the free wavefunctions gκ and fκ .

3
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Figure 4. Radial electronic densities of bound and free electrons at
85.46 g cm−3 and temperatures 1.34 × 107 (1) and 2.69 × 108 K (2)
for U.

In the regime where μ/T is greater than 250, DF is close
to the step function, then Nfree,i ≈ 0 (10). To have enough
points in the energy grid in the space where the variation of DF

is strong, we split the integral into (3) this way:

Nfree = Nfree,c + Nfree,v

Nfree,c =
∑

κ

∫ μ−25T

0
Xκ(E)DF(E, μ) dE (21)

Nfree,v =
∑

κ

∫ μ+25T

μ−25T
Xκ(E)DF(E, μ) dE . (22)

We take a constant number of energy points to
integrate (22). The values of the function Xκ (E) are
interpolated from the initial energy grid on these points.

The procedures are similar for the calculations of ρfree(r)

and Sfree. This is essential to obtain Sfree = Sfree,c + Sfree,v

because when DF is close to the step function we have
F(DF) ≈ 0 (7) and Sfree,c ≈ 0.

3. Equation of state for uranium

We have built a global EOS for U. The three parts of (1) have
been assembled with the help of the Panda code [4].

3.1. Thermal electronic terms

From entropy Se tables calculated with Paradisio, Panda gives
us the other thermal electronic thermodynamic quantities Pe

and Ee. We calculate first the free energy Fe:

Fe(ρ, T ) = −
∫ T

0
Se(ρ, T ′) dT ′ (23)

Ee(ρ, T ) = Fe(ρ, T ) + T Se(ρ, T ) (24)

Pe(ρ, T ) = ρ2 ∂ Fe(ρ, T )

∂ρ
. (25)

Figure 5. Number of bound electrons Nbound versus temperature for
U for isochores 0.01 (1), 19 (2), 811 (3) and 1.2 × 105 g cm−3 (4).

Figure 6. Entropy Se versus temperature for U for isochores 0.01 (1),
19 (2), 811 (3) and 1.2 × 105 g cm−3 (4).

The entropies are calculated on a logarithmic grid in
density and temperature and some isochores are shown in
figure 6. In figure 5 we have plotted the corresponding
isochores for the number of bound electrons Nbound.

We can see a peak for 811 g cm−3 in figure 5 which
corresponds to the passing into the continuum of states 4f5/2

and 4f7/2 where they have become resonances. Therefore there
is no discontinuity on the corresponding entropy isochore. The
small peak for the normal density 19.07 g cm−3 corresponds
to the passing of states 5f5/2 and 5f7/2 into the continuum. At
higher temperature the bound states are less populated so their
passing into the continuum is less visible.

In figure 7 a comparison is done for the normal density
ρ0 = 19.07 g cm−3 between entropies calculated by Paradisio
or TF. Mainly, Paradisio entropies are greater than the TF ones
for temperatures lower than 105 K. For ρ < ρ0 the gap between
TF and Paradisio is greater, it is smaller for ρ > ρ0.

3.2. Thermal ionic terms

We have obtained them from the Panda code [4].
For this study we have used a simple model which

interpolates between the Debye model, at low temperatures or

4
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Figure 7. Comparison of entropies Se calculated by Paradisio or TF
at the normal density 19.07 g cm−3 for U.

high densities, and the ideal gas law, at high temperatures and
low densities.

For the Debye temperature at ambient conditions we have
taken θ0 = 222 K [5] and for the Grüneisen constant γ0 =
2.32 [6]. For the Grüneisen function we use the simple
empirical expression:

γ = γ0
ρ

ρ0
+ 2

3

(
1 − ρ

ρ0

)
. (26)

3.3. Cold curve

In the tension region (ρ � ρ0) we use a semi-empirical
expression provided by Panda:

Ec(ρ) = a1 exp(−a2/ρ
1/3) − a3ρ

a4 + Eb (27)

Eb is the cohesive energy of the solid which is 2.20 MJ kg−1

for U [7]. The constants a1, a2 and a3 are determined by the
choices of Eb, of the equilibrium density and the bulk modulus
at 0 K. The values have been chosen so that the density and the
bulk modulus at ambient condition should be 19 g cm−3 and
104 GPa [8]. The constant a4 has been fixed to 4 for a good
agreement with the cold curve in the compression region.

In the compression region (ρ � ρ0) the cold curve
has been determined theoretically using two band calculation
methods, the muffin tin orbital method (MTO) [11, 12] and
the full potential linearized augmented plane wave method
(FPLAPW) [13, 14]. The calculations with the MTO method
have been done in the body-centered crystal structure (bcc)
with expansions of the basis set to lmax = 3 (f states), while
the calculations with FPLAPW have been done in the bcc and
α-U crystal structures.

In figure 8 we can see that at low pressures the results with
FPLAPW are better, but from 60 GPa the differences are small.
In contrast, it is easier with the MTO method to do calculations
at very high pressures when the conduction band mixes with
the semi-core states 6s, 6p1/2, 6p3/2 and after with the 5d3/2,
5d5/2 states. Then the choices of the linearization energies in
FPLAPW become difficult.

Figure 8. Comparison between experimental (◦) [9], (×) [10],
(�) [8] and theoretical 0 K isotherms for U calculated by us [11–13]
[MTO bcc lmax = 3 (1), FPLAPW bcc (2), FPLAPW α-U (3)] or Li
and Wang [14] [FPLAPW α-U (4)] in the bcc and α-U crystal
structures.

Figure 9. Comparison of the theoretical U Hugoniot with
experiments ( ) [15].

3.4. Hugoniot calculations

The thermodynamic properties, pressure P , energy E and
density ρ of a compressed substance behind a shock front
are determined from those of the initial state and from the
shock wave parameters, shock velocity and particle velocity,
according to the Rankine–Hugoniot relations [15]:

E − E0 = 1/2 (P + P0)(1/ρo − 1/ρ). (28)

A theoretical calculation of (28) requires the global
EOS (1).

In figure 9, our theoretical Hugoniot is in very good
agreement with the experimental points [15], but in this
pressure range the effects of the thermal electronic contribution
to the EOS is small. We could show higher pressures
for Al.
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Figure 10. Number of bound electrons Nbound versus temperature for
Al, for isochores 0.0495 (1), 0.774 (2), 2.7 (3), 19.9 (4) and
32.89 g cm−3 (5).

4. Equation of state for aluminum

Our global EOS for Al has been built like U with the Panda
code.

4.1. Thermal electronic terms

In figure 10 we show some isochores for Nbound.
For 0.0495 g cm−3, at low temperature, there is no free

electron, Al is in the free atom configuration; 1s22s23s22p63p1.
At the higher density of 0.774 g cm−3, at low temperature, Al
becomes metallic; the Fermi level is in the continuum.

For 32.89 g cm−3, at low temperature, the electronic
configuration is 1s22s2 plus about nine free electrons. When
the temperature increases the 2p1/2 and after the 2p3/2 states
appear and therefore the number of bound electrons increases.
This number decreases at higher temperatures with the growing
number of free electrons which are more energetic.

In figure 11 we can see no discontinuity on the isochore
for entropy at 32.89 g cm−3 because, when the states 2p3/2 and
2p1/2 disappear at low temperature, they appear as resonances
in the continuum. Then their global contribution to the entropy
varies smoothly.

In figure 12 a comparison is done for the density
0.774 g cm−3 between entropies calculated by Paradisio or TF.
We can see differences until 106 K.

4.2. Thermal ionic terms and cold curve

For the thermal ionic terms the same model used for U has been
taken, with θ0 = 383 K [16] and γ0 = 2.16 [16].

For the cold curve, in the tension region (ρ � ρ0), where
ρ0 = 2.7 g cm−3 is the normal density, we also use (27) with
Eb = 12.25 MJ kg−1 [16] and B0 = 73 GPa [7].

In the compression region (ρ � ρ0) we use the results
which were obtained by band calculations with the APW
(augmented plane waves) method [17].

Figure 11. Entropy Se versus temperature for Al, for isochores
0.0495 (1), 0.774 (2), 2.7 (3), 19.9 (4) and 32.89 g cm−3 (5).

Figure 12. Comparison of entropies Se calculated by Paradisio or TF
at 0.774 g cm−3 for Al.

4.3. Results in the expanded region

In figure 13 we show our isotherms in the expanded region
and we observe the same phenomena as seen in [16]. In going
to small densities there is a first-order phase transition from
the metallic dense phase (DP) to a nonmetallic DP before the
transition nonmetallic DP–vapor. On the isotherm 9000 K
there is therefore two stages of constant pressure corresponding
to the two transitions. There are also two critical points at
the top of the two curves which limit the coexistence regions,
metallic DP–nonmetallic DP and nonmetallic DP–vapor.

Three phase transitions are now possible from the vapor
to the nonmetallic DP, from the nonmetallic to the metallic DP,
and from the vapor directly to the metallic DP (on isotherm
5000 K).

For the critical point metallic DP–nonmetallic DP, we have
Tc2 = 11 997 K, ρc2 = 0.77 g cm−3 and Pc2 = 2.86 GPa.

For the critical point nonmetallic DP–vapor we have Tc1 =
11 121 K, ρc1 = 0.22 g cm−3 and Pc1 = 0.435 GPa.

The nonmetallic DP–metallic DP transition at low
temperature happens when the free atom is compressed to

6
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Figure 13. Isotherms [5000 (1), 9000 (2), 11 239 (3) 12 354 (4),
20 000 K (5)] in the expansion region with Maxwell constructions for
Al. The thermal electronic contribution is calculated with Paradisio
and there are two critical points: metallic dense phase
(DP)–nonmetallic DP (C 2) and nonmetallic DP–vapor (C 1).

Figure 14. Isotherms [5000 (1), 9000 (2), 12 000 (3) 13 214 (4),
20 000 K (5)] in the expansion region with Maxwell constructions for
Al. The thermal electronic contribution is calculated with TF. There
is only one critical point (C).

about 0.77 g cm−3 where 1 electron of the 3p1 state and 0.15
electrons of the 3s state pass into the continuum.

Because the original Inferno code was incorrect in the
low-density region, as demonstrated in [2], in [16] the thermal
electronic entropy at low density was obtained through an
ionization equilibrium theory connected to the results of the
original Inferno code [1] at higher densities.

We obtain a good value of 2505 K for the boiling
point under atmospheric pressure: the experimental value is
2333 K [7].

In figure 14 we show the isotherms in the expanded region
when the thermal electronic terms are calculated with TF
instead of Paradisio; the thermal ionic terms and cold curve
are kept unchanged.

We observe few differences until 5000 K. We obtain
almost the same value of 2462 K for the boiling point under
atmospheric pressure.

Figure 15. Pressure of Al at a density of 0.1 g cm−3 as a function of
internal energy variation. The thermal electronic contribution is
calculated with Paradisio or TF. Experiments ( ) are from [18].

Figure 16. Pressure of Al at a density of 0.3 g cm−3 as a function of
internal energy variation. The thermal electronic contribution is
calculated with Paradisio or TF. Experiments ( ) are from [18].

At higher temperatures, only the classical transition DP–
vapor remains with the critical point Tc = 13 214 K, ρc =
0.69 g cm−3 and Pc = 1.82 GPa.

We still observe differences at 20 000 K between TF and
Paradisio.

Experimental measurements in the region of low densities
and medium temperatures have been done [18]. Although the
model we use to describe the liquid is very rough we can show
the differences obtained when the thermal electronic term is
calculated with Paradisio or with TF. Better models for the
liquid could be tested in the future [16].

In figures 15 and 16 the differences that we see on the
isochores 0.1 and 0.3 g cm−3 between Paradisio, TF and the
experimental points are similar to the ones obtained with the
Purgatorio code [2].

The lowest pressures in figures 15 and 16 correspond to
temperatures greater than the ones in the phase transitions
shown in figures 13 and 14.

7
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Figure 17. Comparison of the theoretical Al Hugoniots with
experiments ( ) [19]. The thermal electronic contribution is
calculated with Paradisio or TF.

4.4. Hugoniot calculations

In figure 17 we compare the theoretical Hugoniots (28),
obtained with a thermal electronic contribution from Paradisio
or TF, with the experimental points [19]. Again the result
is similar to the same comparisons done with the Purgatorio
code [2].

The atomic structure effects included in Paradisio give
higher compressions and a Hugoniot structure which cannot
be obtained with TF. Furthermore, the Paradisio Hugoniot
correctly goes to the relativistic limit of 7ρ0 (ρ0 initial density)
instead of 4ρ0 for our nonrelativistic TF.

5. Conclusions

To obtain the global EOS of warm matter we have presented
an average atom code. The difficulty was that we want a model
which gives a realistic answer for a huge domain of densities
and temperatures. We have employed Liberman’s relativistic
and quantum model of matter which is a significant advance in
complexity beyond the commonly used TF.

But the original code of Liberman, Inferno [1], employs
approximations which limit its range of validity. In the same
spirit of the Purgatorio code [2], but with different numerical
procedures, we have found ways to deal with the resonant

states in the continuum and the highly oscillatory nature of
free wavefunctions at high temperatures until they can be
approximated by ideal wavefunctions of an electron gas.

By adding to the thermal electronic terms, the thermal
ionic terms and the cold curve, we have obtained a global
EOS for U and Al in good agreement with experiment. In
Al noticeable differences with TF have been shown. A shell
structure appears on the high pressure Hugoniot and a first-
order metallic–nonmetallic transition is created at low densities
and temperatures.
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